Math: Additional Topics in Math
Practice for the New SAT (2016)
Problem Set 4: 8 Questions
(Math: Additional Topics in Math)

1. The volume of a sphere is calculated using the formula $V = \frac{4}{3}\pi r^3$. A sphere with a diameter of 3 is inside a cube, and it touches the cube at six points. What is the volume of space in the cube that is not being occupied by the sphere?

 (A) 36π
 (B) $36 - 4.5\pi$
 (C) $27 - 4.5\pi$
 (D) $9 - 4.5\pi$

2. The diagram above shows a tent supported by an inner pole. If $x = 60^\circ$, what is the height of the pole, P, in meters?

 (A) 1
 (B) 2
 (C) $\frac{4}{\sqrt{3}}$
 (D) $\frac{8}{\sqrt{3}}$

3. Simplify the following expression:

 $i^2 - 5i^3$

 (A) $1 - 5i$
 (B) $5i - 1$
 (C) $6i$
 (D) -4

4. A circle has a radius of 1. A sector of the circle has an arc length of $\pi/3$. How many degrees is the central angle of the sector?
5. The center of the circle above is point \(N \), and its diameter is 10. Points \(J, N, \) and \(M \) lie on a line. What is the area of the shaded sector?

(A) \(\frac{100\pi}{6} \)
(B) \(\frac{100\pi}{3} \)
(C) \(\frac{25\pi}{3} \)
(D) \(25\pi \)

6. In the figure above, \(z = 30^\circ, B = 10, \) and \(C = 30 \). What is the value of \(A \)?

(A) \(15 + \frac{10}{\sqrt{2}} \)
(B) \(15 + \frac{10}{\sqrt{3}} \)
(C) \(10 + \frac{15}{\sqrt{3}} \)
(D) \(10 + \frac{20}{\sqrt{3}} \)

7. A pole is 30 feet tall. In the diagram above, the pole casts a shadow at an angle of \(\pi/6 \) radians from the top of the pole. What is the length in feet of the pole’s shadow?

(A) \(30 \times \tan\left(\frac{\pi}{6}\right) \)
(B) \(\tan\left(\frac{\pi}{6}\right) + 30 \)
(C) \(30 \times \sin\left(\frac{\pi}{6}\right) \)
(D) \(\cos\left(\frac{\pi}{6}\right) + 30 \)

8. A circle is defined by the equation \((x - 1)^2 + (y - 2)^2 = 36\). The center of the circle has coordinates \((j, k)\). What is the value of \(j \)?
Summary

| 8 Questions | 0 Easy, 2 Medium, 6 Hard | Estimated Time: 20 minutes |

Answers

<table>
<thead>
<tr>
<th>Answers</th>
<th>Difficulty</th>
<th>Topic</th>
<th>Other Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) C</td>
<td>Medium</td>
<td>Solve problems using volume formulas.</td>
<td></td>
</tr>
<tr>
<td>2) B</td>
<td>Hard</td>
<td>Use trigonometric ratios and the Pythagorean Theorem to solve applied problems involving right triangles.</td>
<td></td>
</tr>
<tr>
<td>3) B</td>
<td>Hard</td>
<td>Perform arithmetic operations on complex numbers.</td>
<td></td>
</tr>
<tr>
<td>4) 60</td>
<td>Hard</td>
<td>Convert between degrees and radians and use radians to determine arc lengths.</td>
<td></td>
</tr>
<tr>
<td>5) C</td>
<td>Hard</td>
<td>Apply theorems about circles to find areas of sectors.</td>
<td></td>
</tr>
<tr>
<td>6) B</td>
<td>Medium</td>
<td>Use theorems about congruence and similarity to determine missing lengths of triangles.</td>
<td></td>
</tr>
<tr>
<td>7) A</td>
<td>Hard</td>
<td>Use trigonometry and theorems about triangles to determine a missing length that would satisfy a given theorem.</td>
<td></td>
</tr>
<tr>
<td>8) 1</td>
<td>Hard</td>
<td>Use the properties of an equation of a circle to determine a property of the circle’s graph.</td>
<td></td>
</tr>
</tbody>
</table>

Created in NYC by Ivy Global